Skin Cancer Detection using Convolutional Neural Network

Carter Brinton

Introduction

- Skin cancer is the most common cancer in the United States and worldwide
- More than two people die of skin cancer in the U.S every hour.
- What if we could reduce that number by catching early symptoms before it's too late.
- We can do this by using a form of Skin Cancer Detection through a Convolutional Neural Network (CNN) to accurately identify skin cancer lesions from dermoscopic images.
- The goal, prove a CNN trained model can significantly improve early detection of skin cancer and save the lives of many around the globe.

Datasets

- The dataset: Skin Cancer MNIST: HAM10000 (6GB)
 - Types: Actinic keratoses, Basal cell carcinoma, Benign keratosis-like lesions, Dermatofibroma, Melanocytic nevi, Melanoma, Vascular lesions
- Contains two folders with 10,000 images divided between them
 - Trained my model first using the images directly, converting them to vectors containing the image data
 - The images weren't resized already
- CSV file that contains the features
 - lesion_id, image_id, dx, dx_type, age, sex, localization
 - dx: different types of skin lesions
 - dx_type: how diagnosis was made
- Csv file that contains pixel values that make up these images.
 - Trained my final model using the pixel file with 3 RGB channels

Datasets

<u>dx:</u>

nv, mel, bkl, bcc, akiec, vasc, df

dx_type

- "histo": Diagnosis based on a histopathology examination, which involves studying tissue samples under a microscope.
- "follow_up": Diagnosis based on a follow-up examination or evaluation of the skin lesion.
- "consensus": Diagnosis based on a consensus among multiple medical experts or practitioners.
- "confocal": Diagnosis made using confocal microscopy, which is a specialized imaging technique for examining skin lesions.

skin_df = pd.read_csv(os.path.join(data_path, 'HAM10000_metadata.csv'))
skin_df.tail(10)

	lesion_id	image_id	dx	dx_type	age	sex	localization
10005	HAM_0005579	ISIC_0028393	akiec	histo	80.0	male	face
10006	HAM_0004034	ISIC_0024948	akiec	histo	55.0	female	face
10007	HAM_0001565	ISIC_0028619	akiec	histo	60.0	female	face
10008	HAM_0001576	ISIC_0033705	akiec	histo	60.0	male	face
10009	HAM_0005705	ISIC_0031430	akiec	histo	75.0	female	lower extremity
10010	HAM_0002867	ISIC_0033084	akiec	histo	40.0	male	abdomen
10011	HAM_0002867	ISIC_0033550	akiec	histo	40.0	male	abdomen
10012	HAM_0002867	ISIC_0033536	akiec	histo	40.0	male	abdomen
10013	HAM_0000239	ISIC_0032854	akiec	histo	80.0	male	face
10014	HAM_0003521	ISIC_0032258	mel	histo	70.0	female	back

lesion_type_dict = { 'nv': 'Melanocytic nevi', 'mel': 'Melanoma', 'bkl': 'Benign keratosis-like lesions ', 'bcc': 'Basal cell carcinoma', 'akiec': 'Actinic keratoses', 'vasc': 'Vascular lesions', 'df': 'Dermatofibroma'

- Data is skewed, (comes back to bite me...)
- Skin Lesion images next slide

Resizing Images

Function to load and preprocess images
def load_and_preprocess_image(image_path):
 image = Image.open(image_path)
 image = image.resize((100, 75)) # Resize the image
 return np.asarray(image)

Iterate through the DataFrame and save resized images using image_id
for index, row in skin_df.iterrows():
 image_id = row['image_id']
 image_path = row['path']
 resized_image = load_and_preprocess_image(image_path)
 resized_image_path = os.path.join(output_dir, f'{image_id}_resized.jpg')
 Image.fromarray(resized_image).save(resized_image_path)
 # Add the path to the resized image to the DataFrame
 skin_df.at[index, 'path_resized'] = resized_image_path

Store resized images reference in dataframe
skin_df['image'] = skin_df['path_resized'].map(lambda x: np.asarray(Image.open(x)))

Image Names Top to Bottom

- Actinic keratoses
- Basal cell carcinoma
- Benign keratosis-like lesions
- Dermatofibroma
- Melanocytic nevi
- Melanoma
- Vascular lesions

Tools and Frameworks

- The primary tools and frameworks I used were TensorFlow and Keras.

```
from tensorflow.keras.utils import to categorical
# Load and preprocess images for training and testing
x_train = np.asarray(train_set_x['image'].tolist())
x test = np.asarray(test set x['image'].tolist())
# Normalize the data
x train mean = np.mean(x train)
x train std = np.std(x train)
x test mean = np.mean(x test)
x test std = np.std(x test)
x train = (x train - x train mean) / x train std
x test = (x test - x test mean) / x test std
# Perform one-hot encoding on the labels
y train = to categorical(train set y, num classes=7)
y test = to categorical(test set y, num classes=7)
# Reshape image in 3 dimensions (height = 75px, width = 100px, canal = 3)
x train = x train.reshape(x train.shape[0], *(75, 100, 3))
```

x test = x test.reshape(x test.shape[0], *(75, 100, 3))

- Lack of addressing skewed data.

- Options to do next time:
 - Min-Max Scaling
 - Undersampling the Majority Class
 - Oversampling the Minority Class
 - Weighted Loss Function

def build_one(input_shape=(75, 100, 3), num_classes=7, learning_rate=1e-3):
 # Create a Sequential model
 model = Sequential()

Add the first convolutional layer with 64 filters, 3x3 kernel size, ReLU activation, and Glorot uniform kernel initializer model.add(Conv2D(64, kernel_size=(3, 3), input_shape=input_shape, activation='relu', kernel_initializer='glorot_uniform', padding='same'))

Add max-pooling layer with a 2x2 pooling size model.add(MaxPool2D(pool_size=(2, 2)))

Add dropout Layer with a dropout rate of 25%
model.add(Dropout(0.25))

Add the second convolutional layer with 64 filters, 3x3 kernel size, ReLU activation, and Glorot uniform kernel initializer model.add(Conv2D(64, kernel_size=(3, 3), activation='relu', kernel_initializer='glorot_uniform', padding='same'))

Add another max-pooling layer with a 2x2 pooling size model.add(MaxPool2D(pool_size=(2, 2)))

Add dropout Layer with a dropout rate of 25%
model.add(Dropout(0.25))

Flatten the output of the previous layers
model.add(Flatten())

Add a fully connected layer with 128 neurons, ReLU activation, and normal kernel initializer model.add(Dense(128, activation='relu', kernel_initializer='normal'))

Add the output layer with num_classes neurons and softmax activation model.add(Dense(num_classes, activation='softmax'))

Print a summary of the model's architecture
model.summary()

Configure the optimizer with specified learning rate and other hyperparameters
optimizer = Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=False)

Compile the model with categorical cross-entropy loss and accuracy metric model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"])

return model

- A Sequential model can be used for a plain stack of layers where each layer has exactly one input tensor and one output tensor.

- Input to output, passes through a series of specified neural layers, one after the other.

- Adam stands for "Adaptive Moment Estimation" and is a popular optimization algorithm for training neural networks.

```
input_shape = (75, 100, 3)
num_classes = 7
learning_rate = 1e-5
```

Create the convolutional neural network model using the build_one function
model = build_one(input_shape=input_shape, num_classes=num_classes, learning_rate=learning_rate)

epochs = 50
batch_size = 128

Create a learning rate reduction callback
This callback monitors the validation accuracy and reduces the learning rate if it doesn't improve for a specified number of epochs
learning_rate_reduction = ReduceLROnPlateau(monitor='val_accuracy', patience=5, verbose=1, factor=0.5, min_lr=0.00001)

Results - Highest Accuracy: 0.9957

Classificatio	on report:			
	precision	recall	f1-score	support
nv	0.42	0.44	0.43	64
mel	0.55	0.54	0.54	100
bkl	0.51	0.40	0.45	225
bcc	0.40	0.25	0.31	24
akiec	0.84	0.91	0.87	1320
vasc	0.46	0.38	0.41	240
df	0.59	0.53	0.56	30
accuracy			0.74	2003
macro avg	0.54	0.49	0.51	2003
weighted avg	0.72	0.74	0.73	2003

			Co	onfusion Mat	rix		
N	2800.00%	1300.00%	700.00%	0.00%	900.00%	700.00%	0.00%
mel	1200.00%	5400.00%	600.00%	400.00%	1800.00%	500.00%	100.00%
bkl	900.00%	1500.00%	9000.00%	300.00%	8000.00%	2800.00%	0.00%
bcc	500.00%	400.00%	300.00%	600.00%	400.00%	100.00%	100.00%
akiec	500.00%	700.00%	3900.00%	200.00%	120000.00%	6100.00%	600.00%
Vasc	800.00%	400.00%	3000.00%	0.00%	10500.00%	9000.00%	300.00%
ď	0.00%	200.00%	100.00%	0.00%	900.00%	200.00%	1600.00%
	nv	mel	bkl	bcc Predicted	akiec	vasc	df

- Add similar convolutional layers

- Adding dense layers, which is a hidden layer that helps the model learn complex patterns in the data.

- Potentially a culprit for some of my overfitting

```
def build two(input shape, num classes, learning rate, loss):
    model = Sequential()
    model.add(Conv2D(16, kernel size=(3, 3), input shape=input shape, activation='relu', padding='same'))
    model.add(MaxPool2D(pool size=(2, 2)))
    model.add(tf.keras.layers.BatchNormalization())
    model.add(Conv2D(32, kernel size=(3, 3), activation='relu'))
    model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
    model.add(MaxPool2D(pool size=(2, 2)))
    model.add(tf.keras.layers.BatchNormalization())
    model.add(Conv2D(128, kernel size=(3, 3), activation='relu'))
    model.add(Conv2D(256, kernel size=(3, 3), activation='relu'))
    model.add(Flatten())
    model.add(tf.keras.layers.Dropout(0.2))
    model.add(Dense(256, activation='relu'))
    model.add(tf.keras.layers.BatchNormalization())
    model.add(tf.keras.layers.Dropout(0.2))
    model.add(Dense(128, activation='relu'))
    model.add(tf.keras.layers.BatchNormalization())
    model.add(Dense(64, activation='relu'))
    model.add(tf.keras.layers.BatchNormalization())
    model.add(tf.keras.layers.Dropout(0.2))
    model.add(Dense(32, activation='relu'))
    model.add(tf.keras.layers.BatchNormalization())
    model.add(Dense(num classes, activation='softmax'))
    model.summarv()
    optimizer = Adam(learning rate=0.001, beta 1=0.9, beta 2=0.999, epsilon=1e-07, amsgrad=False)
    model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
    return model
```

Creating validation varibles
x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.1, random_state=123)

Create an ImageDataGenerator object for data augmentation and transformation

```
datagen = ImageDataGenerator(
   featurewise center=False, # Don't set input mean to 0 over the dataset
   samplewise center=False,
                                        # Don't set each sample mean to 0
   featurewise std normalization=False,
                                        # Don't divide inputs by std of the dataset
   samplewise std normalization=False,
                                         # Don't divide each input by its std
   zca whitening=False,
                                        # Don't apply ZCA whitening
   rotation range=90,
                                        # Randomly rotate images in the range (degrees, 0 to 180)
                                        # Randomly zoom images
   zoom range=0.1,
   width shift range=0.1,
                                        # Randomly shift images horizontally (fraction of total width)
                                        # Randomly shift images vertically (fraction of total height)
   height shift range=0.1,
                                        # Randomly flip images horizontally
   horizontal flip=True,
                                        # Randomly flip images vertically
   vertical flip=True,
                                        # Shear angle in counter-clockwise direction in degrees
   shear range=10
```

Fit the model using data augmentation with ImageDataGenerator

```
history = model.fit(
    datagen.flow(x_train, y_train, batch_size=batch_size), # Data generator for training data
    validation_data=(x_val, y_val), # Use Validation Data, since 'split' isn't compatible with ImageDataGenerator
    epochs=epochs, # Number of training epochs
    batch_size=batch_size, # Batch size
    shuffle=True, # Shuffle the training data
    callbacks=[learning_rate_reduction] # Callbacks for training
```

Results - Highest Accuracy: 0.77545

Classificatio	n report:			
	precision	recall	f1-score	support
nv	0.40	0.30	0.34	64
mel	0.52	0.59	0.55	100
bkl	0.52	0.58	0.55	225
bcc	0.00	0.00	0.00	24
akiec	0.86	0.91	0.89	1320
vasc	0.56	0.38	0.45	240
df	0.86	0.63	0.73	30
accuracy			0.76	2003
macro avg	0.53	0.49	0.50	2003
weighted avg	0.74	0.76	0.75	2003

Confusion Matrix													
N	1900.00%	1300.00%	1600.00%	0.00%	1000.00%	600.00%	0.00%						
mel	1200.00%	5900.00%	800.00%	0.00%	1600.00%	400.00%	100.00%						
bkl	600.00%	1600.00%	13100.00%	0.00%	5800.00%	1400.00%	0.00%						
bcc	400.00%	500.00%	700.00%	0.00%	800.00%	0.00%	0.00%						
akiec	200.00%	1100.00%	5200.00%	0.00%	120700.00%	4700.00%	100.00%						
vasc	400.00%	700.00%	3900.00%	0.00%	9800.00%	9100.00%	100.00%						
ď	0.00%	300.00%	0.00%	0.00%	700.00%	100.00%	1900.00%						
	nv	mel	bkl	bcc Predicted	akiec	vasc	df						

Load and preprocess the image Basal_Cell_Carcinoma image = Image.open('Basal_Cell_Carcinoma.jpg') image

Melanocytic nevi (nv): 0.00% Melanoma (mel): 0.00% Benign keratosis-like lesions (bkl): 0.00% Basal cell carcinoma (bcc): 0.00% Actinic keratoses (akiec): 0.00% Vascular lesions (vasc): 0.00% Dermatofibroma (df): 100.00%

Model's Answer: Dermatofibroma (df)

```
image = image.resize((75, 100))
img = np.asarray(image).reshape(-1, 75, 100, 3)
```

```
# Make a prediction using the model
result = model.predict(img)
result = result.tolist()
print(f"{result[0]}\n")
```

```
max_prob = max(result[0])
class_ind = result[0].index(max_prob)
```

```
lesion_type_keys = list(lesion_type_dict.keys())
class_shorthand = lesion_type_keys[class_ind]
```

```
if class_shorthand in lesion_type_dict:
    correct_name = lesion_type_dict[class_shorthand]
    correct_shorthand = class_shorthand
```

```
for i, probability in enumerate(result[0]):
    class_shorthand = lesion_type_keys[i]
    if class_shorthand in lesion_type_dict:
        class_names = lesion_type_dict[class_shorthand]
        print(f"{class_names} ({class_shorthand}): {probability * 100:.2f}%")
```

print(f"\nModel's Answer: {correct_name} ({correct_shorthand})")

Let's look at the Pixel CSV file (RGB channels, 28x28x3)

skin_csv_df = pd.read_csv(os.path.join(data_path, 'hmnist_28_28_RGB.csv')) skin csv df.tail(10)

	pixel0000	pixel0001	pixel0002	pixel0003	pixel0004	pixel0005	pixel0006	pixel0007	pixel0008	pixel0009	 pixel2343	pixel2344	pixel2345	pixel2346	pixel2347	pixel2348	pixel2349	pixel2350	pixel2351	label
10005	141	103	90	155	113	105	166	122	112	176	 186	147	126	177	140	121	163	129	110	0
10006	201	150	151	209	163	159	220	175	164	227	 138	98	93	113	72	67	114	73	70	0
10007	26	13	19	25	10	17	24	6	5	23	 22	6	9	27	9	10	23	5	6	0
10008	178	134	148	178	142	158	201	<mark>1</mark> 71	192	208	 196	152	148	198	158	<mark>160</mark>	197	155	158	0
10009	166	157	156	166	157	156	165	156	158	167	 172	163	154	165	155	146	159	151	143	0
10010	183	165	181	182	165	180	184	166	182	188	 208	185	187	208	186	186	206	187	189	0
10011	2	3	1	38	33	32	121	104	103	132	 96	79	76	24	23	21	3	4	1	0
10012	132	118	118	167	149	149	175	156	160	184	 204	181	178	181	159	153	172	151	145	0
10013	160	124	146	164	131	152	167	127	146	169	 185	162	167	184	157	166	185	162	172	0
10014	175	142	121	181	150	134	181	150	133	178	 159	79	82	174	137	125	175	139	126	6

reference: https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000/discussion/183083

```
skin_lesion_labels={
```

0:('akiec', 'actinic keratoses and intraepithelial carcinomae'),

- 1:('bcc' , 'basal cell carcinoma'),
- 2:('bkl', 'benign keratosis-like lesions'),
- 3:('df', 'dermatofibroma'),
- 4:('nv', ' melanocytic nevi'),
- 5:('vasc', ' pyogenic granulomas and hemorrhage'),
- 6:('mel', 'melanoma'),
- }

Results - Highest Accuracy: 0.99485

- Used build_two model function for my third training

Classificatio	n report:												
	precision	recall	f1-score	support									
nv	0.33	0.28	0.30	64									
mel	0.53	0.41	0.46	100									
bkl	0.45	0.47	0.46	225									
bcc	0.33	0.21	0.26	24				C	onfusion Mat	rix			
akiec	0.84	0.91	0.87	1320									
vasc	0.76	0.53	0.63	30	Z	1800.00%	900.00%	1800.00%	0.00%	900.00%	0.00%	1000.00%	
df	0.46	0.35	0.40	240									
accuracy			0.73	2003	lei	1700.00%	4100.00%	700.00%	600.00%	2200.00%	100.00%	600.00%	
macro avg	0.53	0.45	0.48	2003	Ē								
weighted avg	0.71	0.73	0.72	2003									
					bkl	1000.00%	1400.00%	10600.00%	100.00%	7200.00%	0.00%	2200.00%	
					lrue bcc	400.00%	400.00%	500.00%	500.00%	400.00%	0.00%	200.00%	
<u>Using same</u>	<u>e 'Basal_Ce</u> l	II_Carcin	<u>ioma' imag</u>	<u>je</u>	1								
Melanocytic nevi (nv): 0.62% Melanoma (mel): 74 49%						100.00%	400.00%	5600.00%	300.00%	119700.00%	300.00%	5600.00%	
Benign keratosis-like lesions (bkl): 1.69% Basal cell carcinoma (bcc): 5.46% Actinic keratoses (akiec): 12.37% Vascular lesions (vasc): 4.58% Dermatofibroma (df): 0.78%						100.00%	200.00%	0.00%	0.00%	900.00%	1600.00%	200.00%	
						400.00%	300.00%	4100.00%	0.00%	10700.00%	100.00%	8400.00%	
Model's An	swer: Mela	noma (me	el)			nv	mel	bkl	bcc Predicted	akiec	vasc	df	

I built an App???

Conclusion

- Possibly bit off more than I could chew....
- Don't forget about accounting for skewed data
- Challenges with lots of fine tuning/hyperparameters
- Library and dependency errors are stressful
- Training a model of this scale takes a lot of time
- Won't get model working on the first try, and if you do, something is most likely wrong
- Future goals:
 - Train a more consistent and reliable model
 - Advance model to distinguishing various stages of cancer